

OVERFLOW Analysis of the DLR F11 Geometry for HiLiftPW-2

James G. Coder

Graduate Assistant/NDSEG Fellow
Penn State University

Presented at the 2nd AIAA CFD High-Lift Prediction Workshop (HiLiftPW-2)

San Diego, CA

June 22-23, 2013

Solution Methods

- Solver: OVERFLOW 2.2e/2.2f
 - RHS: 3rd-order accurate Roe upwind
 - LHS: Scalar pentadiagonal approximate factorization
 - Low-Mach preconditioning
 - Recommended artificial dissipation
 - Grid sequencing and multigrid acceleration
 - Non-time accurate solution
 - Convergence assumed when force/moment limit cycles are reached
- Grids: Committee-provided structured overset grids (series E)
 - Generated by Boeing Huntington Beach
- Hardware
 - DoD HPC machines (AFRL and Navy DSRC Machines)

Solution Methods

- Turbulence Modeling
 - SA (Cases 1, 2a, and 2b)
 - SA-RC (Case 1 Medium, 2a, and 2b)
 - SA- \tilde{n} (Transition 2c)
 - SA-QCR2000- \tilde{n} (Transition 2c)
- Turbulence model studies limited by time and available computing resources
 - Originally planned for full studies of SA, SA-RC, SST, and SST-RC for Cases 1,
 2a, and 2b
 - Also planned to compare behavior of Langtry-Menter model (both original and applied to the Spalart-Allmaras model) with the Penn State amplification factor transport model

Grid Convergence Study (Case 1)

Force/Moment Convergence Behavior

Grid Convergence, R = 15.1 Million: Lift Curve

Grid Convergence, R = 15.1 Million: Drag Polar

Grid Convergence , R = 15.1 Million : Profile Drag Polar

Grid Convergence, R = 15.1 Million: Pitching Moment

High Re Grid Convergence Study

R = 15.1e6, α = 7°

High Re Grid Convergence Study

High Re Grid Convergence Study

RC Correction, No Tracks, R = 15.1 Million

R = 15.1e6, α = 7°

Effect of Slat Tracks and Flap Track Fairings (Cases 1 and 2b)

Tracks/Fairings Effects, R = 15.1 Million: Lift Curve

Tracks/Fairings Effects, R = 15.1 Million: Drag Polar

Tracks/Fairings Effects, R = 15.1 Million: Pitching Moment

Effect of Slat and Flap Tracks, R = 15.1 Million

Effect of Slat and Flap Tracks, R = 15.1 Million

Reynolds Number Study (Cases 2a and 2b)

Reynolds Number Study: Lift Curve

Effect of RC Correction, Tracks/Fairings On, R = 1.35 Million

Effect of RC Correction, Tracks/Fairings On, R = 1.35 Million

R = 1.35e6, $\alpha = 21^{\circ}$

Transitional Flow Effects (Case 2c)

Transition Modeling

Amplification Factor Transport Equation (AIAA 2013-0253)

$$\frac{\partial \left(\rho \tilde{n}\right)}{\partial t} + \frac{\partial \left(\rho u_{j} \tilde{n}\right)}{\partial x_{j}} = \rho \Omega F_{crit} F_{growth} + \frac{\partial}{\partial x_{j}} \left[\sigma_{n} \left(\mu + \mu_{t}\right) \frac{\partial \tilde{n}}{\partial x_{j}}\right]$$

- Predictive model based on the approximate envelope method of Drela and Giles
 - Models Tollmien-Schlichting transition
- Uses local flow variables and wall distance to estimate the boundary-layer shape factor
 - Parallelizable (no integration paths)
 - Requires free-stream conditions to be available at every grid point
- Insensitive to domain size
 - Transition criterion set critical amplification factor
- Shows improvement over local-correlation methods for predicting flow around airfoils (including multi-element airfoils)

Transition Modeling

Applied to the Spalart-Allmaras eddy-viscosity model

$$\frac{D\tilde{v}}{Dt} = c_{b1} \left(1 - f_{t2,mod} \right) \tilde{S} \tilde{v} - \left[c_{w1} f_w - \frac{c_{b1}}{\kappa^2} f_{t2,mod} \right] \left(\frac{\tilde{v}}{d} \right)^2 + \frac{1}{\sigma} \left[\frac{\partial}{\partial x_j} \left((v + \tilde{v}) \frac{\partial \tilde{v}}{\partial x_j} \right) + c_{b2} \frac{\partial \tilde{v}}{\partial x_j} \frac{\partial \tilde{v}}{\partial x_j} \right]$$

- where the f_{t2} function is modified to

$$f_{t2,mod} = c_{t3} \left[1 - \exp\left(2\left(\tilde{n} - N_{crit}\right)\right) \right] \exp\left(-c_{t4} \left(\frac{\tilde{\nu}}{\nu}\right)^{2}\right)$$

with
$$c_{t3} = 1.2$$
 and $c_{t4} = 0.05$

- N_{crit} set to 8.15 for Case 2c
 - Based on reported B-LSWT turbulence levels and Mack's relationship

Quadratic Constitutive Relation (QCR)

- Non-linear extension to the Boussinesq eddy-viscosity hypothesis proposed by Spalart
 - Original (QCR2000) version implemented into OVERFLOW 2.2f

$$\tau_{ij,QCR} = 2\mu_t \left[S_{ij} - c_{nl1} \left(O_{ik} S_{jk} + O_{jk} S_{ik} \right) \right]$$

- where $c_{n/1} = 0.3$ and

$$O_{ik} = \frac{\frac{\partial u_i}{\partial x_k} - \frac{\partial u_k}{\partial x_i}}{\sqrt{\frac{\partial u_m}{\partial x_n} \frac{\partial u_m}{\partial x_n}}}$$

• Higher-order terms demonstrated to improve predictions for corner flows

Quadratic Constitutive Relation (QCR)

SA-QCR predicts significantly reduced SOB separation on the CRM wing used for DPW-V

From Sclafani, et al. (AIAA 2013-0048)

 Of great interest for HiLiftPW-2 simulations, but only applied to transitional data due to time constraints

HiLiftPW-2

Transition Study, R = 1.35 Million: Lift Curve

Transition Study, R = 1.35 Million : Drag Polar

Surface Streamlines vs. QCR/Transition: α = 18.5°

Experiment shows separation onset on the main element at ~50% and ~75% semispan locations

OVERFLOW predicts onset of separation at 75%, but not at 50%.

Separation on flap appears to be more prominent

Surface Streamlines vs. QCR/Transition : α = 18.5°

Surface Streamlines vs. QCR/Transition : α = 18.5°

OVERFLOW solution shows contamination on the slat and main element near the root

This behavior for the slat seems to agree with experiment

Laminar-separation patterns are well-predicted outboard of the contaminated region

Surface Streamlines vs. QCR/Transition : α = 21°

Experiment shows large separated region midspan causing wing stall

OVERFLOW predicts stall-causing separation farther outboard

Surface Streamlines vs. QCR/Transition: α = 21°

Root contamination on the main element is more prominent, but still contained on slat

Seems to be the result of slat wake contamination (essentially bypass transition) rather than leading-edge contamination

HiLiftPW-2

Surface Streamlines vs. QCR/Transition : α = 21°

Contamination occurs on the flap as well near the root

Preliminary studies indicate it being a result of excessive eddy-viscosity production

More investigation required into this behavior

HiLiftPW-2

Some Conclusions and Future Work

- Behavior dominated by trailing-edge separation
 - Shift in zero-lift angle of attack
 - Relatively soft stall behavior
 - Choice of turbulence model has strong influence
- OVERFLOW failed to predict spanwise location of upper-surface separation wedge
 - Experiment showed $\eta \approx 50\%$
 - OVERFLOW predicted $\eta \approx 75\%$
- Transition modeling had little effect on the predictions
 - Slight reduction in profile drag
 - Not enough to reconcile CFD predictions with experiment
 - More transition models need to be explored!

Acknowledgments

- HiLiftPW-2 Organizing Committee
- Boeing Research & Technology, Huntington Beach
- Professor Mark Maughmer, Penn State University
- Note: This research was conducted with Government support under and awarded by DoD, High Performance Computing Modernization Program, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.

Thank you for your time

Questions?

•

Without multigrid acceleration, solution locally destabilized on the medium grid but produced reasonable forces/moments

Multigrid stabilized the solution, but barely affected the lift, drag, and pitching moment in comparison

Density contours, R = 15.1e6, α = 18.5°